Dimensionality reduction for click-through rate prediction: Dense versus sparse representation
نویسندگان
چکیده
In online advertising, display ads are increasingly being placed based on realtime auctions where the advertiser who wins gets to serve the ad. This is called real-time bidding (RTB). In RTB, auctions have very tight time constraints on the order of 100ms. Therefore mechanisms for bidding intelligently such as clickthrough rate prediction need to be sufficiently fast. In this work, we propose to use dimensionality reduction of the user-website interaction graph in order to produce simplified features of users and websites that can be used as predictors of clickthrough rate. We demonstrate that the Infinite Relational Model (IRM) as a dimensionality reduction offers comparable predictive performance to conventional dimensionality reduction schemes, while achieving the most economical usage of features and fastest computations at run-time. For applications such as real-time bidding, where fast database I/O and few computations are key to success, we thus recommend using IRM based features as predictors to exploit the recommender effects from bipartite graphs.
منابع مشابه
Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملCompressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کاملLocal Feature Analysis: a Flexible Statistical Framework for Dimensionality Reduction by Sparsification of Naturalistic Sound
Long segments of speech are comprised of well localized structures that can appear anywhere in the record. Although the natural mathematical framework for such translationally invariant ensembles is filter-bank analysis, techniques that are based on chopping up the signal into small windows, such as transform coding and CELP, have proven successful for low-bit-rate coding. Here we show that a p...
متن کاملSemi-Supervised Dimensionality Reduction of Hyperspectral Image Based on Sparse Multi-Manifold Learning
In this paper, we proposed a new semi-supervised multi-manifold learning method, called semisupervised sparse multi-manifold embedding (S3MME), for dimensionality reduction of hyperspectral image data. S3MME exploits both the labeled and unlabeled data to adaptively find neighbors of each sample from the same manifold by using an optimization program based on sparse representation, and naturall...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1311.6976 شماره
صفحات -
تاریخ انتشار 2013